
Spectral Graph Sparsification:
overview of theory and practical methods

Yiannis Koutis
University of Puerto Rico - Rio Piedras

Graph Sparsification or ‘Sketching’

 Compute a smaller graph that preserves
some crucial property of the input

 Motivation: Computational efficiency
with approximation guarantees

• BFS: Breadth First Spanning Tree

• Spanner: Spanning subgraph that approximately preserves distances

Spectral Graph Sparsification

 Compute a smaller graph that preserves
some crucial property of the input

 We want to approximately preserve
the eigenvalues and eigenvectors

of the graph Laplacian

 Motivation: Speed-up many clustering and partitioning
algorithms based on computing Laplacian eigenvectors

Spectral Graph Sparsification

 Compute a smaller graph that preserves
some crucial property of the input

 We want to approximately preserve
the quadratic form xTLx of the Laplacian L

Implies spectral approximations
for both the Laplacian and the normalized Laplacian

The Graph Laplacian

1

2

20
15

30

1

Spectral Sparsification by Picture

• H is a reweighted subgraph of G

• H is obtained using randomness (sampling)

Combinatorial sketching

Spectral sketching

Linear system solvers

Better combinatorial sketching

Outline

• Sums of random positive matrices

• Combinatorial sketching to incremental sparsification

• Incremental sparsification for solving

• Parallel and distributed sparsification

• Deep sparsification by effective resistances

• A heuristic for better clustering

Matrix Ordering

• Whenever for all vectors x we have

• We write

• In this notation, a spectral sparsifier H satisfies

G¹H

Sums of random matrices

[Tropp ‘12, adapted]:
1. Let S be a nxn PSD matrix and Y1, … , Yk be independent random PSD

matrices also of size nxn.

2. Let Y = S+i Yi

3. Let Z = E[Y]

4. Suppose Yi ¹ R ¢ Z

S : Combinatorial Sketch
Yi : Edges

R: should be O(C/log n)

Outline

• Sums of random positive matrices

• Combinatorial sketching to incremental sparsification

• Incremental sparsification for solving

• Parallel and distributed sparsification

• Deep sparsification by effective resistances

• A heuristic for better clustering

A simple algorithm

1. Compute a spanner S’:

2. Let H:= S’

3. For every edge e not in H:
 H:=H + k*e, with probability 1/k

 H has O(nlog n) + m/k edges

n: number of vertices
m: number of edges

and a simple proof

• Suppose the graph G has n vertices and m edges

• For simplicity we let G be unweighted (generalization is easy)

• By definition of spanner, for every edge e of G, there is a path pe in S ‘
that joins the two endpoints of e and has length logn.

• Algebraically, if Ge is the Laplacian of edge e:

and a simple proof

• Apply Tropp’s Theorem on:

• Combinatorial Sketch:

• Samples:

Incremental Sparsification for Solving

 H has O(nlog n) + m/k edges

 [Spielman and Teng]

 If we can construct H with same guarantees but only n+m/k edges then we

can solve linear systems on Laplacians in O(mlog2n) time

 [K, Miller Peng 10]

 Use low-stretch tree instead of spanner. It preserves distances on average.

Use sampling with skewed probability distribution.

Incremental Sparsification for Solving

 [K, Miller Peng 10,11]

 If A is a symmetric diagonally dominant matrix then an approximate
solution to Ax= b can be computed in O(m log n log log n log (1/²)) time,
where ² is the required precision

 Fact:

 Approximations to the j first eigenvectors can be computed
via solving O(j log n) linear systems

Outline

• Sums of random positive matrices

• Combinatorial sketching to incremental sparsification

• Incremental sparsification for solving

• Parallel and distributed sparsification

• Deep sparsification by effective resistances

• A heuristic for better clustering

Parallel and Distributed Sparsification

1. Can we do better than incremental sparsification ?

2. Is there a parallel sparsification algorithm?

3. Is there a distributed sparsification algorithm ?

• Spanners hold the key to questions #2, #3

• There are very efficient parallel and distributed algorithms
for computing spanners. From this we get parallel and
distributed incremental sparsification. This doesn’t itself
imply parallel solvers.

• The main problem is question #1.

Parallel and Distributed Sparsification

• A better combinatorial sketch:

• t-bundle spanner: A collection of graphs S1….St such that Si is
a spanner for G – (S1+….+ Si-1)

• A t-bundle spanner can be computed with t sequential calls
to a spanner computation algorithm.

• If t is small then the algorithm remains efficient

 (polylogarithmic parallel time and distributed rounds)

A simple algorithm

1. Compute O(log4 n)-bundle spanner S

2. Let H:= S

3. For every edge e not in H:
 H:=H + 2*e, with probability 1/2

 H has O(nlog5 n) + m/2 edges

n: number of vertices
m: number of edges

A simple algorithm

• H has O(nlog5 n) + m/2 edges

• Small size reduction (factor of 2)

• Very tight spectral approximation

• Repeat recursively on H. In O(log n) rounds we get O(nlog6 n)
edges and a constant spectral approximation.

A parallel solver

• This is the best known parallel sparsification routine.

• Improves the total work guarantees of a parallel solver
recently described by Peng and Spielman.

• Parallel solver that works in polylogarithmic time
and does O(mlog3 n) work.

Outline

• Sums of random positive matrices

• Combinatorial sketching to incremental sparsification

• Incremental sparsification for solving

• Parallel and distributed sparsification

• Deep sparsification by effective resistances

• A heuristic for better clustering

Spielman-Srivastava: Deep sparsification

• Spielman and Srivastava proved: There is a graph H with
edges such that

• The algorithm is based on sampling edges with probabilities proportional
to the effective resistances of the edges in the graph

• Proof uses similarly Tropp’s theorem

Combinatorial sketching

Spectral sketching

Linear system solvers

Better combinatorial sketching

The Incidence Matrix

1

2

20
15

30

1

W is the diagonal matrix containing the square roots of edge weights

Spielman-Srivastava: Deep sparsification

• Effective resistances can be approximated closely by solving O(log n) linear
Laplacian systems as follows:

1. Let L be the Laplacian of the graph

2. Let B be the incident matrix of the graph

3. Let Q be a random Johnson-Lindenstrauss projection of size m x O(log n)

4. Solve the systems L X = BT Q

5. Effective resistance between vertices i and j is equal to
the ||Xi – Xi||2 where Xi is the ith row of X

• The solution X is a n x O(log n) matrix.

• Each row can be interpreted as an embedding of corresponding vertex to the
O(log n)-dimensional Euclidean space.

• Let’s call this the effective resistance embedding.

• http://ccom.uprrp.edu/~ikoutis/SpectralAlgorithms.htm

http://ccom.uprrp.edu/~ikoutis/SpectralAlgorithms.htm

Heuristic: clustering based on
the effective resistance embedding

• Small effective resistance for an edge e means that there are a lot of short
connections between the two endpoints .

• Points that are close in the geometric embedding should be close in this
connectivity sense in the graph.

• Idea: Produce a k-clustering of the graph by running k-means on the
effective resistance embedding

• Produced clusterings appear to have better properties than clusterings
based on geometric embeddings using the k-first eigenvectors. It is also
much faster for most values of k.

Visualization of unweighted social network graph

Visualization of the same graph
using effective resistances as weights

Combinatorial sketching

Spectral sketching

Linear system solvers

Better combinatorial sketching

Spectral Sparsification vs Algebraic Sketching

• The sparsifier H of G has the form

• Here S is a diagonal matrix containing the reweight factors
of the edges and B is the incidence matrix for G

• Algebraic sketching : instead of solving a regression
problem with a matrix B, solve instead one with SB
where S is a sparse projection matrix

• Goal is

Spectral Sparsification vs Algebraic Sketching

• So, spectral graph sparsification is
a special instance of algebraic sketching

• Algebraic sketching takes a very tall and thin matrix
and finds a nearly equivalent tall and thin matrix

• In the graph sparsification case graph combinatorics
allow for a much tighter control on size reduction

