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Graph Sparsification or ‘Sketching’ 

 

     Compute a smaller graph that preserves                                                         
some crucial property of the input 

 

      Motivation: Computational efficiency                                                   
with approximation guarantees                                                  

 
 

• BFS: Breadth First Spanning Tree 

• Spanner: Spanning subgraph that approximately preserves distances 



Spectral Graph Sparsification 

 

    Compute a smaller graph that preserves                                  
some crucial property of the input 

 

     We want to approximately preserve                                             
the eigenvalues and eigenvectors                                                       

of the graph Laplacian 

 

     Motivation: Speed-up many clustering and partitioning 
algorithms based on computing Laplacian eigenvectors 



Spectral Graph Sparsification 

 

    Compute a smaller graph that preserves                                            
some crucial property of the input 

 

   We want to approximately preserve                                                       
the quadratic form xTLx of the Laplacian L 

 

Implies spectral approximations                                                            
for both the Laplacian and the normalized Laplacian 



The Graph Laplacian 
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Spectral Sparsification by Picture 

 

 

 

 

 

 

 

 

• H is a reweighted subgraph of G 

• H is obtained using randomness (sampling) 



 

Combinatorial sketching  

 

Spectral sketching 

 

Linear system solvers 

 

Better combinatorial sketching 
 

 



Outline 

• Sums of random positive matrices 

• Combinatorial sketching to incremental sparsification 

• Incremental sparsification for solving 

• Parallel and distributed sparsification 

• Deep sparsification by effective resistances 

• A heuristic for better clustering 

 

 

 

 



Matrix Ordering 

• Whenever for all vectors x we have 

 

 

 

• We write  

 

 

• In this notation, a spectral sparsifier H satisfies  
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Sums of random matrices 

[Tropp ‘12, adapted]:   
1.  Let S be a nxn PSD matrix and Y1, … , Yk be independent random PSD 

matrices also of size nxn.  

2. Let Y = S+i Yi  

3. Let Z = E[Y] 

4. Suppose Yi ¹ R ¢ Z 

 

 

 

 

 

 

 

 

 

S :  Combinatorial Sketch 
Yi :  Edges 

R: should be O(C/log n) 



Outline 

• Sums of random positive matrices 

• Combinatorial sketching to incremental sparsification 

• Incremental sparsification for solving 

• Parallel and distributed sparsification 

• Deep sparsification by effective resistances 

• A heuristic for better clustering 

 

 

 

 



A simple algorithm 

1. Compute a spanner S’: 

2. Let H:= S’ 

3. For every edge e not in H: 
     H:=H + k*e, with probability 1/k 

 

 

    H has O(nlog n) + m/k edges 
 

 

 

 

 

 

 

n: number of vertices 
m: number of edges 



and a simple proof 

• Suppose the graph G has n vertices and m edges 

• For simplicity we let G be unweighted (generalization is easy) 

 

• By definition of spanner, for every edge e of G, there is a path pe  in S  ‘                
that joins the two endpoints of e and has length logn.  

 

• Algebraically, if Ge is the Laplacian of edge e:  

 

 
 

 

 

 

 

 



and a simple proof 

• Apply Tropp’s Theorem on:  

 

• Combinatorial Sketch:  

 

• Samples:  

 

 
 

 

 

 

 

 

 

 



Incremental Sparsification for Solving 

     H has O(nlog n) + m/k edges 

 

 

     [Spielman and Teng]  

     If we can construct H with same guarantees but only n+m/k edges then we 

can solve linear systems on Laplacians in O(mlog2n) time 

 

     [K, Miller Peng 10]  

     Use low-stretch tree instead of spanner. It preserves distances on average. 

Use sampling with skewed probability distribution. 

 

 

 



Incremental Sparsification for Solving 

    [K, Miller Peng 10,11]  

     If A is a symmetric diagonally dominant matrix  then an approximate 
solution to Ax= b can be computed in O(m log n log log n log (1/²)) time, 
where ² is the required precision 

 

      Fact:  

      Approximations to the j first eigenvectors can be computed                        
via solving O(j log n) linear systems 

 



Outline 

• Sums of random positive matrices 

• Combinatorial sketching to incremental sparsification 

• Incremental sparsification for solving 

• Parallel and distributed sparsification 

• Deep sparsification by effective resistances 

• A heuristic for better clustering 

 

 

 

 



Parallel and Distributed Sparsification 

1. Can we do better than incremental sparsification ? 

2. Is there a parallel sparsification algorithm?  

3. Is there a distributed sparsification algorithm  ?  

 

• Spanners hold the key to questions #2, #3 

• There are very efficient parallel and distributed algorithms 
for computing spanners. From this we get parallel and 
distributed incremental sparsification.  This doesn’t itself 
imply parallel solvers.  

• The main problem is question #1. 



Parallel and Distributed Sparsification 

• A better combinatorial sketch: 

• t-bundle spanner: A collection of graphs S1….St such that Si is 
a spanner for G – (S1+….+ Si-1) 

 

• A t-bundle spanner can be computed with t sequential calls 
to a spanner computation algorithm.  

 

• If t is small then the algorithm remains efficient  

      (polylogarithmic parallel time and distributed rounds) 



A simple algorithm 

1. Compute  O(log4 n)-bundle spanner S 

2. Let H:= S 

3. For every edge e not in H: 
     H:=H + 2*e, with probability 1/2 

 

 

    H has O(nlog5 n) + m/2 edges 
 

 

 

 

 

 

 

n: number of vertices 
m: number of edges 



A simple algorithm 

•  H has O(nlog5 n) + m/2 edges 

 

 

• Small size reduction (factor of 2) 

• Very tight spectral approximation 

 

• Repeat recursively on H. In O(log n) rounds we get O(nlog6 n) 
edges and a constant spectral approximation. 

 
 

 

 

 



A parallel solver 

 

 

• This is the best known parallel sparsification routine. 

• Improves the total work guarantees of a parallel solver 
recently described by Peng and Spielman. 

 

• Parallel solver that works in polylogarithmic time                  
and does O(mlog3 n) work.  
 

 

 

 

 

 



Outline 

• Sums of random positive matrices 

• Combinatorial sketching to incremental sparsification 

• Incremental sparsification for solving 

• Parallel and distributed sparsification 

• Deep sparsification by effective resistances 

• A heuristic for better clustering 

 

 

 

 



Spielman-Srivastava: Deep sparsification 

• Spielman and Srivastava proved: There is a graph H with                          
edges such that  

 

 

• The algorithm is based on sampling edges with probabilities proportional 
to the effective resistances of the edges in the graph  

 

• Proof uses similarly Tropp’s theorem 

 

 

 

 

 

 

 



 

Combinatorial sketching  

 

Spectral sketching 

 

Linear system solvers 

 

Better combinatorial sketching 
 

 



The Incidence Matrix 
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W is the diagonal matrix  containing the square roots of edge weights 



Spielman-Srivastava: Deep sparsification 

• Effective resistances can be approximated closely by solving O(log n) linear 
Laplacian systems as follows: 

 

1. Let L be the Laplacian of the graph 

2. Let B be the incident matrix of the graph  

3. Let Q be a random Johnson-Lindenstrauss projection of size m x O(log n) 

4. Solve the systems L X = BT Q 

5. Effective resistance between vertices i and j is equal to                                        
the ||Xi – Xi||2 where Xi is the ith row of X 

 

• The solution X is a n x O(log n) matrix.  

• Each row can be interpreted as an embedding of corresponding vertex to the                       
O(log n)-dimensional Euclidean space.  

• Let’s call this the effective resistance embedding.  

 

 

 

 



 

 

 

 
• http://ccom.uprrp.edu/~ikoutis/SpectralAlgorithms.htm 

http://ccom.uprrp.edu/~ikoutis/SpectralAlgorithms.htm


Heuristic: clustering based on 
the effective resistance embedding 

• Small effective resistance for an edge e means that there are a lot of short 
connections between the two endpoints . 

 

• Points that are close in the geometric embedding should be close in this 
connectivity sense in the graph.  

 

• Idea: Produce a k-clustering of the graph by running k-means on the  
effective resistance embedding   

 

• Produced clusterings appear to have better properties than clusterings 
based on geometric embeddings using the k-first eigenvectors. It is also 
much faster for most values of k.  

 

 

 

 



Visualization of unweighted social network graph 

 



Visualization of the same graph                             
using effective resistances as weights 

 



 

Combinatorial sketching  

 

Spectral sketching 

 

Linear system solvers 

 

Better combinatorial sketching 
 

 



Spectral Sparsification vs Algebraic Sketching 

• The sparsifier H of G has the form 

 

 

• Here S is a diagonal matrix containing the reweight factors 
of the edges and B is the incidence matrix for G 

 

• Algebraic sketching : instead of solving a regression 
problem with a matrix B, solve instead one with SB       
where S is a sparse projection matrix 

• Goal is 

    



Spectral Sparsification vs Algebraic Sketching 

 
 

• So, spectral graph sparsification is                                                           
a special instance of algebraic sketching  
 

• Algebraic sketching takes a very tall and thin matrix                     
and finds a nearly equivalent  tall and thin matrix 
 

• In the graph sparsification case graph combinatorics                
allow for a much tighter control on size reduction 
 
 
 

    


