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e Predictor itself is a matrix

* To learn: need bias
(prior / hypothesis class / regularizer)

* Elementwise (i.e. treat matrix as vector)

— can’t generalize

* Matrix constraints/regularizers:

Block/cluster structure (eg Plaid Model)
Rank

Factorization Norms: Trace-Norm, Weighted
Tr-Norm, Max-Norm, Local Max-Norm, ...

Spectral Regularizers
Group Norms



Matrix Factorization Models

rank(X) = min dim(U,V
(X)= min dim(U,V)
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Matrix Factorization Models
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rank(X) = min dim(U,V
(X)= min dim(U,V)

Bound avg norm of factorization:
U112 = 5 U:2]

Xllyy = min ||U||x- ||V
X It X:UV’” 7 IVIg

Bound norm of fact. uniformly:
U120 = max; |U3]

Xl max = min 102,061V 12,00

aka y,:8;—f,_ norm



Transfter in Multi-Task Learning

* m related prediction tasks: [Argyriou et al 2007]
Learn predictor ¢; for eachtaski = 1..m

* m classes, predict with arg max ¢,,(x) [Amit et al 2007]
y

* Transfer from learned tasks to new task

* Semi-supervised learning:

create auxiliary tasks from unlabeled data (e.g. predict held-out word
from context), transfer from aux task to actual task of interest (e.g.
parsing, tagging) [Ando Zhang 2005]

Factorization model = two layer network,
shared units (learned features) in hidden layer

* Predictors naturally parameterized by a matrix (but there is
no requirement that we output a matrix)



Correlation Clustering
adS Matrix Lea rning [Jalaia et al 2011,2012]

input similarity clustering matrix



Correlation Clustering
adS Matrix Lea rniﬂg [Jalaia et al 2011,2012]

input similarity clustering matrix



Correlation Clustering
adS Matrix Lea rnimg [Jalaia et al 2011,2012]

X

input similarity clustering matrix

min, | |K-A] |, s.t. Kis permuted block-1 diag.

e Can represent desired object as a matrix
Also:

e Corwdsourced similarity learning [Tamuz et al 2011]
* Binary hashing [Tavakoli et al 2013]

* Collaborative permutation learning



Covariance/Precision
Matrix Estimation

* Learning Mahalanobis Metric
d(x,y) < exp(—x'Mx)

* Inferring Dependency Structure
* Sparse Markov Net =» Sparse Precision Matrix
* k Latent Variables =2 + Rank k

* Many latent variables with regularized affect =»
+ Trace-Norm/Max-Norm



Principal Component Analysis

* View |: low rank matrix approximation

* min ||A—K]||
rank(A)<k

e Approximating matrix itself is a matrix parameter
* Does not give compact representation
* Does not generalize

* View lI: find subspace capturing as much of data
distribution as possible
 Maximizing variance inside subspace: max E[||Px||*]
* Minimizing reconstruction error: min E[||x — Px||*]
* Parameter is low-dim subspace =2 represent as matrix



Principal Component Analysis:
Matrix Representation

min ||4A — X||
rank(A)<k

* Represent subspace using basis matrix U € R4*¥

min E [mvinllx — lelz]

= ming<y<; Elx"(I — UU")x]

* Represent subspace using projector P = UU' € R%*¢
min  E[x’(I-P)x]
s.t. 0PI

rank(P)<k



Principal Component Analysis:
Matrix Representation

« min ||A—X]||
rank(A)<k

* Represent subspace using basis matrix U € R4*¥

min E [mvinllx — lelz]

= ming<y<; E[x" (I — UU")x]

* Represent subspace using projector P = UU' € R%*¢

. V4
min E[X (l‘P)X] * Optimum preserved

S.t. OLP<XX] « Efficiently extract rank-k P using rand
rounding, without loss in objective
ra <k tr(P)<k



Matrix Learning

* Matrix Completion, Direct Matrix Learning
* Predictor itself is a matrix

* Multi-Task/Class Learning

* Predictors can be parameterized by a matrix

e Similarity Learning, Link Prediction,
Collaborative Permutation Learning,

Clustering
e Can represent desired object as a matrix

e Subspace Learning (PCA), Topic Models

* Basis Matrix or Projector

What is a good
inductive bias?

Desired
output must
have specific
structure



Possible Inductive Bias:
Matrix Constraints / Regularizers

Elementwise

Factorization

Operator Norms

@ X1,

Rank

Trace-Norm

Spectral Norm || X||,

X141

1 X oo

Weighted Tr-Norm
Max-Norm
Local Max-Norm
NMF

Sparse MF

Group Norms Structural
Group Lasso Plaid Models
11X 1] 0 Block Structure



Spectral Functions

* Spectral function: F(X) = f( singular values of X)
* Fis spectral iff it is rotation invariant: F(X)=F(UXV’)

* Examples:
* rank(X) = |spectrum|,
* Frobenious |X|, = |spectrum]|,
* Trace-Norm = |spectrum]|,
* Spectral Norm | |X] |, = |spectrum]|,
* Positive semi-definite = spectrum = 0
* Trace of p.s.d. matrix = ) spectrum
* Relative entropy of spectrum

e Can lift many vector properties:
e Convexity, (strong convexity)
« VF(X) =UVF(S)V'
* Projection operations
e Duality: F*(X)=Uf*(S)V’
* Mirror-Descent Updates (e.g. “multiplicative matrix updates”)
e =~ Concentration Bounds



Possible Inductive Bias:
Matrix Constraints / Regularizers

Elementwise Factorization Operator Norms
1 X4 .
Weighted Tr-Norm
Group Norms Structural
X 1o Max-Norm Group Lasso Plaid Models
Local Max-Norm X112, 00 Block Structure
NMF

Sparse MF



Learning with Matrices

* Matrices occur explicitly or implicitly in many
learning problems

* Advantages of matrix view (even when not explicit):
can use existing tools, relaxations, opt methods,
concentration and generalization bounds, etc

 What is a good inductive bias?
* |s some structure required or is it just an inductive bias?

e Spectral functions convenient, but don’t capture
everything!



