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Introductory musing — What is a matrix?

ai ,j

1 A vector of n2 parameters

2 A covariance

3 A generalized probability distribution

4 . . .
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1. A vector of n2 parameters

When you regularize with the squared Frobenius norm

min
W

||W||2F +
∑
n

loss(tr(WXn))

Equivalent to

min
vec(W)

||vec(W)||22 +
∑
n

loss(vec(W) · vec(Xn))

No structure: n2 independent variables

3 / 32



1. A vector of n2 parameters

When you regularize with the squared Frobenius norm

min
W

||W||2F +
∑
n

loss(tr(WXn))

Equivalent to

min
vec(W)

||vec(W)||22 +
∑
n

loss(vec(W) · vec(Xn))

No structure: n2 independent variables

4 / 32



2. A covariance

View the symmetric positive definite matrix C as a covariance matrix of
some random feature vector c ∈ Rn, i.e.

C = E
(

(c− E(c))(c− E(c))>
)

n features plus their pairwise interactions
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Symmetric matrices as ellipses

Ellipse = {Cu : ‖u‖2 = 1}
Dotted lines connect point u on unit ball with point Cu on ellipse
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Symmetric matrices as ellipses

Eigenvectors form axes

Eigenvalues are lengths
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Dyads

uu>, where u unit vector

One eigenvalue one

All others zero

Rank one projection matrix
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Directional variance along direction u

V(c>u) = u>Cu = tr(C uu>) ≥ 0

The outer figure eight is direction u times the variance u>Cu

PCA: find direction of largest variance
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3 dimensional variance plots

tr(Cuu>) is generalized probability when tr(C) = 1
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3. Generalized probability distributions

Probability vector ω = (.2, .1., .6, .1)>

=
∑

i ωi︸︷︷︸
mixture coefficients

ei︸︷︷︸
pure events

Density matrix W =
∑

i ωi︸︷︷︸
mixture coefficients

wiw
>
i︸ ︷︷ ︸

pure density matrices

Matrices as generalized distributions

Many mixtures lead to same density matrix

There always exists a decomposition into n eigendyads

Density matrix: Symmetric positive matrix of trace one
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It’s like a probability!

Total variance along orthogonal set of directions is 1

u>1 Wu1 +u>2 Wu2 = 1

a + b + c = 1
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Uniform density?

1
nI

All dyads have generalized probability 1
n

tr(
1

n
I uu>) =

1

n
tr(uu>) =

1

n

Generalized probabilities of n orthogonal dyads
sum to 1
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Conventional Bayes Rule

P(Mi |y) =
P(Mi )P(y |Mi )

P(y)

4 updates with the same data likelihood

Update maintains uncertainty information about maximum likelihood

Soft max
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Bayes Rule for density matrices

D(M|y) =
exp (logD(M) + logD(y|M))

tr (above matrix)

1 update with data
likelyhood matrix
D(y|M)

Update maintains
uncertainty information
about maximum
eigenvalue

Soft max eigenvalue
calculation
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Bayes Rule for density matrices

D(M|y) =
exp (logD(M) + logD(y|M))

tr (above matrix)

3 updates with same
data likelyhood matrix
D(y|M)

Update maintains
uncertainty information
about maximum
eigenvalue

Soft max eigenvalue
calculation
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Bayes Rule for density matrices

D(M|y) =
exp (logD(M) + logD(y|M))

tr (above matrix)

10 updates with same
data likelyhood matrix
D(y|M)

Update maintains
uncertainty information
about maximum
eigenvalue

Soft max eigenvalue
calculation
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Bayes Rule for density matrices

D(M|y) =
exp (logD(M) + logD(y|M))

tr (above matrix)

20 updates with same
data likelyhood matrix
D(y|M)

Update maintains
uncertainty information
about maximum
eigenvalue

Soft max eigenvalue
calculation
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Bayes’ rules

vector matrix

Bayes rule P(Mi |y)= P(Mi )·P(y |Mi )∑
j P(Mj )·P(y |Mj )

D(M|y) = D(M)�D(y|M)
tr(D(M)�D(y|M)

A�B := exp(log A + log B)

Regularizer Entropy Quantum Entropy
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Vector case as special case of matrix case

Vectors as diagonal matrices

All matrices same eigensystem

Fancy � becomes ·

Often the hardest problem
ie bounds for the vector case “lift” to the matrix case

This phenomenon has been dubbed the “free matrix lunch”

Size of matrix = size of vector = n
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PCA setup

Data vectors C =
∑

n xnx
>
n

max
unit u

u>Cu︸ ︷︷ ︸
not convex in u

= max
dyad uu>

tr(Cuu>)︸ ︷︷ ︸
linear in uu>

Corresponding vector problem max
ei

c>ei︸︷︷︸
linear in ei

Vector problem is matrix problem when everything happens in the same
eigensystem

Uncertainty over unit: probability vector
Uncertainty over dyads: density matrix
Uncertainty over k-sets of units: capped probability vector
Uncertainty over rank k projection matrices: capped density matrix
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For PCA

Solve the vector problem first

Do all bounds

Lift to matrix case: essentially replace · by �
Regret bounds stay the same

Free Matrix Lunch
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Questions

When can you “lift”vector case to matrix case?

When is there a free matrix lunch?

Lifting matrices to tensors?

Efficient algorithms for large matrices?

Approximations of �
Avoid eigenvalue decomposition by sampling
. . .
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