Large Scale Matrix Analysis and Inference

Wouter M. Koolen - Manfred Warmuth
Reza Bosagh Zadeh - Gunnar Carlsson - Michael Mahoney

Dec 9, NIPS 2013

Introductory musing - What is a matrix?

(1) A vector of n^{2} parameters
(2) A covariance
(3) A generalized probability distribution
(9)...

1. A vector of n^{2} parameters

When you regularize with the squared Frobenius norm

$$
\min _{\mathbf{W}}\|\mathbf{W}\|_{F}^{2}+\sum_{n} \operatorname{loss}\left(\operatorname{tr}\left(\mathbf{W} \mathbf{X}_{n}\right)\right)
$$

1. A vector of n^{2} parameters

When you regularize with the squared Frobenius norm

$$
\min _{\mathbf{W}}\|\mathbf{W}\|_{F}^{2}+\sum_{n} \operatorname{loss}\left(\operatorname{tr}\left(\mathbf{W} \mathbf{X}_{n}\right)\right)
$$

Equivalent to

$$
\min _{\operatorname{vec}(\mathbf{W})}\|\operatorname{vec}(\mathbf{W})\|_{2}^{2}+\sum_{n} \operatorname{loss}\left(\operatorname{vec}(\mathbf{W}) \cdot \operatorname{vec}\left(\mathbf{X}_{n}\right)\right)
$$

No structure: n^{2} independent variables

2. A covariance

View the symmetric positive definite matrix C as a covariance matrix of some random feature vector $c \in \mathbb{R}^{n}$, i.e.

$$
\mathbf{C}=\mathbb{E}\left((\mathbf{c}-\mathbb{E}(\mathbf{c}))(\mathbf{c}-\mathbb{E}(\mathbf{c}))^{\top}\right)
$$

n features plus their pairwise interactions

Symmetric matrices as ellipses

- Ellipse $=\left\{\mathbf{C u}:\|\mathbf{u}\|_{2}=1\right\}$
- Dotted lines connect point \mathbf{u} on unit ball with point Cu on ellipse

Symmetric matrices as ellipses

- Eigenvectors form axes
- Eigenvalues are lengths

Dyads

$\mathbf{u u}^{\top}$, where \mathbf{u} unit vector

- One eigenvalue one
- All others zero
- Rank one projection matrix

Directional variance along direction u

The outer figure eight is direction \mathbf{u} times the variance $\mathbf{u}^{\top} \mathbf{C u}$ PCA: find direction of largest variance

3 dimensional variance plots

$\operatorname{tr}\left(\mathbf{C} \mathbf{u u}^{\top}\right)$ is generalized probability when $\operatorname{tr}(\mathbf{C})=1$

3. Generalized probability distributions

Probability vector

Density matrix

$$
\begin{aligned}
\boldsymbol{\omega} & =(.2, .1 ., .6, .1)^{\top} \\
& =\sum_{i} \underbrace{\omega_{i}}_{\text {mixture coefficients }} \underbrace{\omega_{i}}_{\text {mixture coefficients }} \underbrace{\mathbf{e}_{i}}_{\text {pure events density matrices }} \\
\mathbf{W} & =\sum_{i} \underbrace{}_{\mathbf{w}_{i} \mathbf{w}_{i}^{\top}}
\end{aligned}
$$

3. Generalized probability distributions

Matrices as generalized distributions

3. Generalized probability distributions

Probability vector

Density matrix

$$
\begin{aligned}
& \boldsymbol{\omega}=(.2, .1 .,, 6 \underbrace{. .1)^{\top}}_{\text {mixture coefficients }} \underbrace{\omega_{i}}_{\text {pure events }} \\
&=\sum_{i} \\
& \mathbf{\omega _ { i }} \\
& \mathbf{W}=\sum_{i} \underbrace{\mathbf{\omega}_{i} \mathbf{w}_{i}^{\top}}_{\text {mixture coefficients }}
\end{aligned}
$$

Matrices as generalized distributions

- Many mixtures lead to same density matrix

$$
\left.0.2 \longrightarrow+0.3 /+0.5|=| \begin{array}{ll}
0.35 & 0.15 \\
0.15 & 0.65
\end{array}\right)=\square=0.29+0.71 /
$$

- There always exists a decomposition into n eigendyads
- Density matrix: Symmetric positive matrix of trace one

It's like a probability!

Total variance along orthogonal set of directions is 1

$$
\mathbf{u}_{1}^{\top} \mathbf{W} \mathbf{u}_{1}+\mathbf{u}_{2}^{\top} \mathbf{W} \mathbf{u}_{2}=1
$$

$a+b+c=1$

Uniform density?

- All dyads have generalized probability $\frac{1}{n}$

$$
\operatorname{tr}\left(\frac{1}{n} \mathbf{I} \mathbf{u u}^{\top}\right)=\frac{1}{n} \operatorname{tr}\left(\mathbf{u} \mathbf{u}^{\top}\right)=\frac{1}{n}
$$

- Generalized probabilities of n orthogonal dyads sum to 1

Conventional Bayes Rule

$$
P\left(M_{i} \mid y\right)=\frac{P\left(M_{i}\right) P\left(y \mid M_{i}\right)}{P(y)}
$$

- 4 updates with the same data likelihood
- Update maintains uncertainty information about maximum likelihood
- Soft max

Conventional Bayes Rule

$$
P\left(M_{i} \mid y\right)=\frac{P\left(M_{i}\right) P\left(y \mid M_{i}\right)}{P(y)}
$$

- 4 updates with the same data likelihood
- Update maintains uncertainty information about maximum likelihood
- Soft max

Conventional Bayes Rule

$$
P\left(M_{i} \mid y\right)=\frac{P\left(M_{i}\right) P\left(y \mid M_{i}\right)}{P(y)}
$$

- 4 updates with the same data likelihood
- Update maintains uncertainty information about maximum likelihood
- Soft max

Conventional Bayes Rule

$$
P\left(M_{i} \mid y\right)=\frac{P\left(M_{i}\right) P\left(y \mid M_{i}\right)}{P(y)}
$$

- 4 updates with the same data likelihood
- Update maintains uncertainty information about maximum likelihood
- Soft max

Bayes Rule for density matrices

$$
\mathrm{D}(\mathbb{M} \mid \mathbf{y})=\frac{\exp (\log \mathrm{D}(\mathbb{M})+\log \mathrm{D}(\mathrm{y} \mid \mathbb{M}))}{\operatorname{tr}(\text { above matrix })}
$$

- 1 update with data likelyhood matrix $\mathrm{D}(\mathrm{y} \mid \mathbb{M})$
- Update maintains uncertainty information about maximum eigenvalue
- Soft max eigenvalue calculation

Bayes Rule for density matrices

$$
\mathrm{D}(\mathbb{M} \mid \mathbf{y})=\frac{\exp (\log \mathrm{D}(\mathbb{M})+\log \mathrm{D}(\mathrm{y} \mid \mathbb{M}))}{\operatorname{tr}(\text { above matrix })}
$$

- 2 updates with same data likelyhood matrix $\mathrm{D}(\mathrm{y} \mid \mathbb{M})$
- Update maintains uncertainty information about maximum eigenvalue
- Soft max eigenvalue calculation

Bayes Rule for density matrices

$$
\mathbf{D}(\mathbb{M} \mid \mathbf{y})=\frac{\exp (\log \mathrm{D}(\mathbb{M})+\log \mathrm{D}(\mathrm{y} \mid \mathbb{M}))}{\operatorname{tr}(\text { above matrix })}
$$

- 3 updates with same data likelyhood matrix $\mathrm{D}(\mathrm{y} \mid \mathbb{M})$
- Update maintains uncertainty information about maximum eigenvalue
- Soft max eigenvalue calculation

Bayes Rule for density matrices

$$
\mathrm{D}(\mathbb{M} \mid \mathbf{y})=\frac{\exp (\log \mathrm{D}(\mathbb{M})+\log \mathrm{D}(\mathrm{y} \mid \mathbb{M}))}{\operatorname{tr}(\text { above matrix })}
$$

- 4 updates with same data likelyhood matrix $\mathrm{D}(\mathrm{y} \mid \mathbb{M})$
- Update maintains uncertainty information about maximum eigenvalue
- Soft max eigenvalue calculation

Bayes Rule for density matrices

$$
\mathrm{D}(\mathbb{M} \mid \mathbf{y})=\frac{\exp (\log \mathrm{D}(\mathbb{M})+\log \mathrm{D}(\mathrm{y} \mid \mathbb{M}))}{\operatorname{tr}(\text { above matrix })}
$$

- 10 updates with same data likelyhood matrix $\mathrm{D}(\mathrm{y} \mid \mathbb{M})$
- Update maintains uncertainty information about maximum eigenvalue
- Soft max eigenvalue calculation

Bayes Rule for density matrices

$$
\mathrm{D}(\mathbb{M} \mid \mathbf{y})=\frac{\exp (\log \mathrm{D}(\mathbb{M})+\log \mathrm{D}(\mathrm{y} \mid \mathbb{M}))}{\operatorname{tr}(\text { above matrix })}
$$

- 20 updates with same data likelyhood matrix $\mathrm{D}(\mathrm{y} \mid \mathbb{M})$
- Update maintains uncertainty information about maximum eigenvalue
- Soft max eigenvalue calculation

Bayes' rules

	vector	matrix
Bayes rule	$P\left(M_{i} \mid y\right)=\frac{P\left(M_{i}\right) \cdot P\left(y \mid M_{i}\right)}{\sum_{j} P\left(M_{j}\right) \cdot P\left(y \mid M_{j}\right)}$	$\mathbf{D}(\mathbb{M} \mid \mathbf{y})=\frac{\mathbf{D}(\mathbb{M}) \odot \mathbf{D}(\mathbf{y} \mid \mathbb{M})}{\operatorname{tr}(\mathbf{D}(\mathbb{M}) \odot \mathbf{D}(\mathbf{y} \mid \mathbb{M})}$
	$\mathbf{A} \odot \mathbf{B}:=\exp (\log \mathbf{A}+\log \mathbf{B})$	

Bayes' rules

	vector	matrix
Bayes rule	$P\left(M_{i} \mid y\right)=\frac{P\left(M_{i}\right) \cdot P\left(y \mid M_{i}\right)}{\sum_{j} P\left(M_{j}\right) \cdot P\left(y \mid M_{j}\right)}$	$\mathbf{D}(\mathbb{M} \mid \mathbf{y})=\frac{\mathbf{D}(\mathbb{M}) \odot \mathbf{D}(\mathbf{y} \mid \mathbb{M})}{\operatorname{tr}(\mathbf{D}(\mathbb{M}) \odot \mathbf{D}(\mathbf{y} \mid \mathbb{M})}$
		$\mathbf{A} \odot \mathbf{B}:=\exp (\log \mathbf{A}+\log \mathbf{B})$
Regularizer	Entropy	Quantum Entropy

Vector case as special case of matrix case

- Vectors as diagonal matrices
- All matrices same eigensystem
- Fancy \odot becomes .
- Often the hardest problem ie bounds for the vector case "lift" to the matrix case

Vector case as special case of matrix case

- Vectors as diagonal matrices
- All matrices same eigensystem
- Fancy \odot becomes .
- Often the hardest problem ie bounds for the vector case "lift" to the matrix case
- This phenomenon has been dubbed the "free matrix lunch"

Size of matrix $=$ size of vector $=n$

PCA setup

Data vectors $\mathbf{C}=\sum_{n} \mathbf{x}_{n} \mathbf{x}_{n}^{\top}$

Corresponding vector problem

Vector problem is matrix problem when everything happens in the same eigensystem

Uncertainty over unit: probability vector Uncertainty over dyads: density matrix Uncertainty over k-sets of units: capped probability vector Uncertainty over rank k projection matrices: capped density matrix

For PCA

- Solve the vector problem first
- Do all bounds
- Lift to matrix case: essentially replace - by \odot
- Regret bounds stay the same
- Free Matrix Lunch

Questions

- When can you "lift" vector case to matrix case?
- When is there a free matrix lunch?
- Lifting matrices to tensors?
- Efficient algorithms for large matrices?
- Approximations of \odot
- Avoid eigenvalue decomposition by sampling
- ...

