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Introductory musing — What is a matrix?

@ A vector of n® parameters

@ A covariance

© A generalized probability distribution
Qo ...



1. A vector of n? parameters

When you regularize with the squared Frobenius norm

rQAiln W2 + Zloss(tr(WXn))



1. A vector of n? parameters

When you regularize with the squared Frobenius norm

rQAiln W2 + Zloss(tr(WXn))

Equivalent to

i wW)||3 W) - vec(X,
ver?(l\?V) |lvec(W)||5 + ;Ioss(vec( ) - vec(Xp))

No structure: n’ independent variables



2. A covariance

View the symmetric positive definite matrix C as a covariance matrix of
some random feature vector c € R”, i.e.

C=E ((c— E(e))(c - E(c))

n features plus their pairwise interactions



@ Ellipse = {Cu : |u]|2 =1}
@ Dotted lines connect point u on unit ball with point Cu on ellipse






Dyads

uu', where u unit vector

@ One eigenvalue one
@ All others zero

@ Rank one projection matrix



Directional variance along direction u

V(c'u)=u'Cu=tr(Cuu') > 0

W'c uyu u

The outer figure eight is direction u times the variance u'Cu

PCA: find direction of largest variance



3 dimensional variance plots

tr(Cuu') is generalized probability when tr(C) = 1
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3. Generalized probability distributions

Probability vector w=(2,.1,6,.1)"
=2 Wi €
~—
mixture coefficients pure events
Density matrix wW=>" wj w,-w,T

mixture coefficients pure density matrices
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3. Generalized probability distributions

Probability vector w=(2,.1.,6,1)"
=2 Wi €
~—
mixture coefficients pure events
Density matrix wW=>" wj wiw,

mixture coefficients pure density matrices

Matrices as generalized distributions

@ Many mixtures lead to same density matrix

02— + o% 051 = = ﬂ= 0.29\\-!- 0.7/

@ There always exists a decomposition into n eigendyads

0.35 0.15
0.15 0.65

@ Density matrix: Symmetric positive matrix of trace one
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It's like a probability!

Total variance along orthogonal set of directions is 1

7

ulTWul —|—u2TWu2 =1

=

a+b+c=1
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Uniform density?

1 @ All dyads have generalized probability %
n
1 1
tr(=1 uu') = —tr(uu’) = =
r(n uu ) p r(uu')

o Generalized probabilities of n orthogonal dyads
sum to 1

15/32



Conventional Bayes Rule

P(Mily) =

Prior Likelihood
o

0 o
12345 12345

0
12345

@ 4 updates with the same data likelihood
@ Update maintains uncertainty information about maximum likelihood
@ Soft max
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Conventional Bayes Rule

P(Mi) Py M;)

Prior Likelihood
o

12345 12345

Hmﬂﬂﬂ Hﬂﬂﬂﬂ )

@ 4 updates with the same data likelihood

@ Update maintains uncertainty information about maximum likelihood
@ Soft max
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Conventional Bayes Rule

P(Mily) =

Prior Likelihood
o

12345 12345
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o
12345

@ 4 updates with the same data likelihood
@ Update maintains uncertainty information about maximum likelihood
@ Soft max
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Bayes Rule for density matrices

D(Mly) = exp (log D(M) + log D(y/|M))
tr (above matrix)

08

@ 1 update with data
likelyhood matrix
D(y|M)

o Update maintains
uncertainty information
about maximum

0.6

041

0.2

-02

04 f

“San > »*

Se o — o= B R
06 1 eigenvalue
o8y ] o Soft max eigenvalue
4 05 0 05 1 calculation
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Bayes Rule for density matrices

D(Mly) = exp (log D(M) + log D(y/|M))
tr (above matrix)

0.8
@ 2 updates with same

data likelyhood matrix
D(y|M)

o Update maintains
uncertainty information
about maximum

0.6

041

0.2
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4 05 0 05 1 calculation
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Bayes Rule for density matrices

D(Mly) = exp (log D(M) + log D(y/|M))
tr (above matrix)

0.8
@ 3 updates with same

data likelyhood matrix
D(y|M)

o Update maintains
uncertainty information
about maximum

0.6

041

0.2

-02

-04 1

06 1 eigenvalue
o8y ] o Soft max eigenvalue
4 05 0 05 1 calculation
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Bayes Rule for density matrices

D(Mly) = exp (log D(M) + log D(y/|M))
tr (above matrix)

0.8
@ 4 updates with same
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about maximum
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Bayes Rule for density matrices

D(Mly) = exp (log D(M) + log D(y/|M))
tr (above matrix)

0.8
@ 10 updates with same

data likelyhood matrix
D(y|M)

o Update maintains
uncertainty information
about maximum

0.6

041

0.2

-02

04 f

06 1 eigenvalue
o8y ] o Soft max eigenvalue
Y 05 0 05 1 calculation
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Bayes Rule for density matrices

D(Mly) = exp (log D(M) + log D(y/|M))
tr (above matrix)

0.8
@ 20 updates with same

data likelyhood matrix
D(y|M)

o Update maintains
uncertainty information
about maximum

0.6

041

0.2

-02

04 f

06 1 eigenvalue
o8y ] o Soft max eigenvalue
Y 05 0 05 1 calculation
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Bayes' rules

‘ vector matrix

Bayes rule P(M;’y):% D(Mly) = %

A®B :=exp(log A + log B)
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Bayes' rules

vector matrix

— P(M;)-P(y|M; — DM)OD(y|M
P(Mly)= sTUXPLIML D(1aly) = DUOODGI

A®B :=exp(log A + log B)

Bayes rule

Regularizer Entropy Quantum Entropy
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Vector case as special case of matrix case

@ Vectors as diagonal matrices
@ All matrices same eigensystem

@ Fancy ® becomes -

@ Often the hardest problem
ie bounds for the vector case “lift” to the matrix case
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Vector case as special case of matrix case

Vectors as diagonal matrices

All matrices same eigensystem

Fancy ® becomes -

Often the hardest problem
ie bounds for the vector case “lift” to the matrix case

@ This phenomenon has been dubbed the “free matrix lunch”

Size of matrix = size of vector = n
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Data vectors C = >, x,x,)

max u' Cu max_ tr(Cuu')
unit u dyad uuT  N—_——
—_————

. linear in uu™
not convex in u
Corresponding vector problem max c'e
e; ~—~—
linear in e;

Vector problem is matrix problem when everything happens in the same
eigensystem

Uncertainty over unit: probability vector

Uncertainty over dyads: density matrix

Uncertainty over k-sets of units: capped probability vector
Uncertainty over rank k projection matrices: capped density matrix
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For PCA

Solve the vector problem first
Do all bounds
Lift to matrix case: essentially replace - by ®

Regret bounds stay the same

Free Matrix Lunch
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@ When can you "lift” vector case to matrix case?
@ When is there a free matrix lunch?
o Lifting matrices to tensors?

o Efficient algorithms for large matrices?

e Approximations of ©
e Avoid eigenvalue decomposition by sampling
o ...
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