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Out-of-Sample is What Counts
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e A pattern exists
e We don’t know it

e We have data to learn it
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e Tested on new cases
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Data

Data Matrix

d dimensions &

® name  age debt income - -- hair weight  sex
[John 2lyrs —$10K $65K --- black 175lbs M 7

0

= Joe Tdyrs —$100K $25K --- blonde 275lbs M

2 |Jane 27yrs —$20K $85K .- blonde 135lbs F

<

)

<

g Jen 3Tyrs —$400K $105K --- brun 155lbs F
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Response Matrix
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More Beautiful Data
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Throwing Out Unnecessary Features is (Good

Sparsity: represent your solution using only a few features.

‘Sparse’ solutions generalize to out-of-sample better — less overfitting.

Sparse solutions are easier to interpret — few important features.

Computations are more efficient.

Problem: How to find the few relevant features quickly.
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PCA, K-means, Linear Regression

Sparse, approx, fast (relative error)

© He”{fauer Creator: Malik Magdon-Ismail

K-Means

Sparse, approx, fast (relative error)
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Regression

Exact

top-k PCA regression

AW

Fast-sparse regression (additive error)
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Sparsity

Represent your solution using only a few ...

Example: linear regression

Xw =Yy

y is an optimal linear combination of only a few columns in X.

(sparse regression; regularization (| w |, < k); feature subset selection; ... )
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Singular Value Decomposition (SVD)
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Xp = UpliVe
—  XV,V]

X} 1s the best rank-k approximation to X.

Reconstruction of X using only a few deg. of freedom.

] 1
Xa20 X40

V. is an orthonormal basis for the best k-dimensional subspace of the row space of X.
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Fast Approximate SVD

. /= XR RNN(dXT),ZERnXT
» Q = QR.FACTORIZE(Z)
s Vi <= SVDg(QTX)

Theorem. Let r = | k(1 + %ﬂ and B = X — X\A/k\A/E Then,

E[JE]] <1+ X =X |

running time is O(ndk) = o(SVD)
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[BDM, FOCS 2011]
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V. and Sparsity

Important “dimensions” of V. are important for X

XS1

X 89

X S3

XS4 X 85 %

VT VI € RF*T

The sampled r columns are “good” if
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[ = VIV, = VIV,

Sampling schemes: Largest norm (Jollife, 1972);

Randomized norm sampling (Rudelson, 1999; RudelsonVershynin, 2007);

Greedy (Batson et al, 2009; BDM, 2011).
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Sparse PCA — Algorithm

1 Choose a few columns C of X; C € R"*".
. IFind the best rank-£ approximation of X in the span of C, X¢ .
> Compute the SVDy, of

Xox = UcpXer Ve

7 = XV

Each feature in 7 is a mixture of only the few original r feature dimensions in C.

| X = XVerVErl < 1X = XepVerVipl = 1X = Xex | < (1+0E) X =X |.

[BDM, FOCS 2011]
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Sparse PCA

Dense PCA

& Sparse PCA, r = 2k

Theorem. One can construct, in o(SVD), k features that are r-sparse, r = O(k), that
are as good as exact dense top-k PCA-features.
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Clustering: K-Means

Full, slow Fast, sparse

3 clusters

4 Clusters

! !
A h,

Theorem. There is a subset of features of size O(#clusters) which produces nearly
the optimal partition (within a constant factor). One can quickly produce features with
a log-approximation factor.

[BDM,2013]
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Fast Regression using Few Important Features

PCA, slow, dense  Sparse, fast

——

IL(

Theorem. Can find O(k) pure features which performs as well top-k PCA-regression
(additive error controlled by | X — Xj | z/0%).

[BDM,2013]
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The Proofs

All the algorithms use the sparsifier of V. in [BDM,FOCS2011].

1. Choose columns of V; to preserve its singular values.

2. Ensure that the selected columns preserve the structural properties of the objective
with respect to the columns of X that are sampled.

3. Use dual set sparsification algorithms to accomplish (2).
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THANKS!

e Data compression (PCA):
quick and reveals few important features

e Unsupervised clustering:
quick and reveals few important features

e Supervised Regression:
quick and reveals few important features

Few features: easy to interpret; better generalizers; faster computations.
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