Efficiently Implementing Sparsity in Learning

M. Magdon-Ismail

Rensselaer Polytechnic Institute

(Joint Work)

"Waiter! My glass is half empty."

December 9, 2013.

Out-of-Sample is What Counts

- A **pattern** exists
- \bullet We don't know it
- We **have data** to learn it
- Tested on **new cases**

Data

Data Matrix

Response Matrix

d dimensions \otimes

\bigcirc	name	age	debt	income	• • •	hair	weight	sex	
	[John	21 yrs	-\$10K	65K	•••	black	175 lbs	M]	
nts	Joe	74yrs	-\$100K	\$25K		blonde	275 lbs	M	
Iod	Jane	27 yrs	-\$20K	\$85K	•••	blonde	135 lbs	F	
ata	:								
n d	Jen	37 yrs	-\$400K	\$105K		brun	155 lbs	F	

	credit?	limit	risk
Γ	\checkmark	2K	high
	×	0	-
	\checkmark	10K	low
	÷		
	\checkmark	15K	high

 $\mathbf{X} \in \mathbb{R}^{n \times d}$

More Beautiful Data

Throwing Out Unnecessary Features is Good

Sparsity: represent your solution using only a few features.

'Sparse' solutions generalize to out-of-sample better – less *overfitting*.

Sparse solutions are easier to interpret – few important features.

Computations are more efficient.

Problem: How to find the few relevant features *quickly*.

PCA, K-means, Linear Regression

 \underline{K} -Means

Exact

$$k = 20$$
$$r = 2k$$

Regression

Exact

top-k PCA regression

Fast-sparse regression (additive error)

Exact

Approx, fast (relative error)

Sparse, approx, fast (relative error)

Sparse, approx, fast (relative error)

Sparsity

Represent your solution using **only a few** ...

Example: linear regression

$$\begin{bmatrix} \mathbf{I} \\ \mathbf{I}$$

y is an optimal linear combination of **only a few** columns in X. (sparse regression; regularization ($|| \mathbf{w} ||_0 \le k$); feature subset selection; ...) Singular Value Decomposition (SVD)

$$X = \begin{bmatrix} U_k & U_{d-k} \end{bmatrix} \begin{bmatrix} \Sigma_k & 0 \\ 0 & \Sigma_{d-k} \end{bmatrix} \begin{bmatrix} V_k^T \\ V_{d-k}^T \end{bmatrix} \qquad O(nd^2)$$
$$\bigcup_{(n \times d)} \sum_{(d \times d)} V^T \qquad (d \times d)$$

 $\begin{array}{rcl} \mathbf{X}_k &=& \mathbf{U}_k \boldsymbol{\Sigma}_k \mathbf{V}_k^{\mathrm{T}} \\ &=& \mathbf{X} \mathbf{V}_k \mathbf{V}_k^{\mathrm{T}} \end{array}$

 X_k is the best rank-k approximation to X. Reconstruction of X using **only a few** deg. of freedom.

 V_k is an orthonormal basis for the best k-dimensional subspace of the row space of X.

Fast Approximate SVD

1: Z = XR2: Q = QR.FACTORIZE(Z)3: $\hat{V}_k \leftarrow SVD_k(Q^TX)$ $R \sim \mathcal{N}(d \times r), Z \in \mathbb{R}^{n \times r}$

Theorem. Let
$$r = \left\lceil k(1 + \frac{1}{\epsilon}) \right\rceil$$
 and $\mathbf{E} = \mathbf{X} - \mathbf{X} \hat{\mathbf{V}}_k \hat{\mathbf{V}}_k^{\mathrm{T}}$. Then,
 $\mathbb{E}\left[\|\mathbf{E}\| \right] \le (1 + \epsilon) \|\mathbf{X} - \mathbf{X}_k\|$

running time is O(ndk) = o(SVD)

[BDM, FOCS 2011]

V_k and Sparsity

Important "dimensions" of V_k^T are important for X

The sampled r columns are "good" if

 $\mathbf{I} = \mathbf{V}_k^{\mathrm{T}} \mathbf{V}_k \approx \hat{\mathbf{V}}_k^{\mathrm{T}} \hat{\mathbf{V}}_k.$

Sampling schemes: Largest norm (Jollife, 1972); Randomized norm sampling (Rudelson, 1999; RudelsonVershynin, 2007); Greedy (Batson et al, 2009; **BDM, 2011**).

Sparse PCA – Algorithm

- ^{1:} Choose a few columns C of X; $C \in \mathbb{R}^{n \times r}$.
- ² Find the best rank-k approximation of X in the span of C, $X_{C,k}$.
- ^{3:} Compute the SVD_k of

$$\mathbf{X}_{\mathbf{C},k} = \mathbf{U}_{\mathbf{C},k} \boldsymbol{\Sigma}_{\mathbf{C},k} \mathbf{V}_{\mathbf{C},k}^{\mathrm{T}}.$$

4:

$$\mathbf{Z} = \mathbf{X} \mathbf{V}_{\mathbf{C},k}.$$

Each feature in Z is a mixture of **only the few** original r feature dimensions in C.

$$\|X - XV_{C,k}V_{C,k}^{T}\| \le \|X - X_{C,k}V_{C,k}V_{C,k}^{T}\| = \|X - X_{C,k}\| \le \left(1 + O(\frac{2k}{r})\right) \|X - X_{k}\|.$$

[BDM, FOCS 2011]

Sparse PCA

Theorem. One can construct, in o(SVD), k features that are r-sparse, r = O(k), that are as good as exact dense top-k PCA-features.

Clustering: K-Means

Full, slow

Fast, sparse

Theorem. There is a subset of features of size O(#clusters) which produces nearly the optimal partition (within a constant factor). One can quickly produce features with a log-approximation factor.

[BDM,2013]

Fast Regression using Few Important Features

Theorem. Can find O(k) pure features which performs as well top-k PCA-regression (additive error controlled by $||X - X_k||_F / \sigma_k$).

[BDM,2013]

The Proofs

All the algorithms use the sparsifier of V_k^{T} in [BDM,FOCS2011].

- 1. Choose columns of V_k^{T} to preserve its singular values.
- 2. Ensure that the selected columns preserve the structural properties of the objective with respect to the columns of X that are sampled.
- 3. Use dual set sparsification algorithms to accomplish (2).

THANKS!

• Data compression (PCA): quick and reveals few important features

• Unsupervised clustering: quick and reveals few important features

• Supervised Regression: quick and reveals few important features

Few features: easy to interpret; better generalizers; faster computations.

