
Preconditioned Krylov solvers for kernel regression

Balaji Vasan Srinivasan1, Qi Hu2, Nail A. Gumerov3, Ramani Duraiswami3∗
1Adobe Research Labs, Bangalore, India; 2Facebook Inc., San Francisco, CA, USA

3Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
balsrini@adobe.com,[huqi,gumerov,ramani]@umiacs.umd.edu

Abstract
A primary computational problem in kernel regression is solution of a dense linear
system with the N × N kernel matrix. Because a direct solution has an O(N3)
cost, iterative Krylov methods are often used with fast matrix-vector products. For
poorly conditioned problems, convergence of the iteration is slow and precondi-
tioning becomes necessary. We investigate preconditioning from the viewpoint
of scalability and efficiency. The problems that conventional preconditioners face
when applied to kernel methods are demonstrated. A novel flexible precondi-
tioner that not only improves convergence but also allows utilization of fast kernel
matrix-vector products is introduced. The performance of this preconditioner is
first illustrated on synthetic data, and subsequently on a suite of test problems in
kernel regression and geostatistical kriging.

1 Introduction
The basic computations in kernel regression methods involve a number of linear algebra operations
on matrices of kernel functions (K̂), which take as arguments the training and/or the testing data.
A kernel function k(xi, xj) generalizes the notion of the similarity between data points. Given
X = {x1, x2, . . . , xN}, xi ∈ Rd, the kernel matrix entries are given by,

K̂ =

 k(x1, x1) . . . k(x1, xN)
...

. . .
...

k(xN , x1) . . . k(xN , xN)

 . (1)

The kernel function k is chosen to reflect prior information, in the absence of which, the Gaussian
kernel Φ is widely used, Φ(xi, xj) = exp

(
−∥xi−xj∥2

2σ2

)
. We use this kernel, though the methods

discussed apply to other kernels as well, as is illustrated in experiments. The kernel matrix is usually
regularized K = K̂+ γI with γ chosen appropriately according to the problem.

Kernel regression appears in many variations: e.g. ridge regression [2], Gaussian process regression
[12] and geostatistical kriging [7]. The key computation in all these variants is the solution of a
linear system with K.

Direct solution for a dense kernel matrix system has a time complexity O(N3) and a memory com-
plexity O(N2), which prevents its use with large datasets. Iterative Krylov methods [16] address
this partially by reducing the time complexity to O(kN2), k being the number of iterations [5, 3].
The dominant cost per Krylov iteration is a kernel matrix-vector product (MVP), whose structure
has been utilized to reduce the O(N2) space and time complexity further. The space requirement is
reduced to O(N) by casting the MVP as a weighted kernel summation and computing k(xi, xj) on-
the-fly when evaluating the sum. Further, by using efficient kernel MVP [23, 13, 8, 9, 21], the cost
of the MVP in each Krylov iteration can be reduced to O(N logN) or O(N2/p), p being the number

∗This work is a part of Chesapeake Bay Forecast System and we gratefully acknowledge National Ocean and
Atmospheric Administration (NOAA) Award NA06NES4280016 for funding the project. We also acknowl-
edge NSF award 0403313 and NVIDIA support for the Chimera cluster at the CUDA Center of Excellence at
UMIACS.

1

of processors. In these fast kernel MVP, there is usually a trade-off between accuracy and speed,
and usually a MVP of reduced accuracy can be obtained faster. This is either explicit (e.g. single
precision SSE or graphical processors [21]) or algorithmic (IFGT [23, 13], dual-tree [8], Figtree
[9]). However the convergence rate suffers as the problem size increases since the matrix condition
number usually increases with data. To speedup iterative methods in these cases, apart from using
fast MVP, we need to reduce the number of iterations.

The convergence of the Krylov methods is determined by the matrix condition number κ (κ ≥ 1),
κ = λmax

λmin
, 1 ≤ κ < ∞,where λmax and λmin are the largest and smallest eigenvalues of K respec-

tively. For smaller κ, the convergence is faster. For larger κ, there is a significant decrease in the
convergence rate, necessitating a “preconditioner” [16] to improve the conditioning. Precondition-
ing has been suggested for kernel methods [3, 10], but to our knowledge, there has been no previous
work to design a preconditioner for such matrices.

To be effective, the preconditioner matrix construction cost should be small, and be able to take
advantage of fast MVPs. We propose a novel preconditioner that improves convergence and has the
added benefit that it utilizes the fast MVPs available for the kernel matrix.

The paper is organized as follows. We discuss kernel regression and its variants that we seek to use in
Sec. 2. We introduce Krylov methods and their convergence properties in Sec. 3 and survey different
preconditioning techniques in Sec. 4. The new preconditioner is introduced and its parameters and
convergence are studied in Sec. 5. Finally we test its performance on synthetic and standard datasets
in Sec. 6.

2 Kernel regression
We are particularly interested in Gaussian process regression and geostatistical kriging.

Gaussian process regression (GPR) [12] is a probabilistic kernel regression approach which uses
the prior that the regression function is sampled from a Gaussian process. Given D = {xi, yi}Ni=1,
where xi is the input and yi is the corresponding output, the function model is assumed to be
y = f(x) + ϵ, where ϵ is a Gaussian noise process with zero mean and variance γ. Rasmussen et al.
[12] use the Gaussian process prior with a zero mean function and a covariance function defined by
a kernel K̂(x, x∗), which is the covariance between x and x∗, i.e. f(x) ∼ GP (0, K̂(x, x∗)). With
this prior, the posterior of the output f(x∗) is also Gaussian with mean m = k(x∗)

T (K̂ + γI)−1y

and variance Σ = K̂(x∗, x∗)− k(x∗)
T (K̂+ γI)−1k(x∗), where x∗ is the input at which prediction

is required and k(x∗) = [K̂(x1, x∗), K̂(x2, x∗) . . . , K̂(xN , x∗)]
T . Here “inverses” imply solution

of the corresponding linear system. Hyper-parameters are estimated via maximum likelihood tech-
niques [12]. Note that the noise variance γ results in the regularization of the kernel matrix.

Kriging [7] is a group of geostatistical techniques to interpolate the value of a random field at
an unobserved location from observations of its value at nearby locations. It was first used with
mining and has since been applied in several scientific disciplines including atmospheric science,
environmental monitoring and soil management. There are several versions of kriging; the com-
monly used simple kriging results in a formulation similar to Gaussian process regression [7]. Given
geostatistical values yis recorded at locations xis, the interpolation at a new point x∗ is given by
y∗ = k(x∗)(K̂+ γI)−1y, where k(x∗) is similar to the posterior mean in GPR.

3 Krylov methods
Krylov methods are formulated as a “cost-minimization” problem over a set of basis vectors (the
Krylov basis) created via matrix vector products of the matrix under consideration. A detailed
discussion and analysis can be found in [16, 14]; we provide a brief overview here.

For solving Kx = b. Krylov methods begin with an initial guess x(0) and minimize the residual
r(k) = b − Kx(k) in some norm, by moving the iterates along directions in the Krylov subspace
Kk = span(r0,Kr0, . . . ,K

k−1r0). The directions are augmented over each Krylov iteration, a
significant difference from simpler iterative approaches like Gauss-Siedel where the next iterate
depends only on the previous one.

At the kth iteration, an orthogonal matrix V (k) = [v1, v2, . . . , vk] is generated such that columns
of V (k) span the Krylov subspace Kk [16], KV (k) = V (k+1)H̄(k), where H̄(k) is an augmented

2

Hessenberg matrix,

H̄(k) =


h1,1 h1,2 h1,3 . . . h1,k

h2,1 h2,2 h2,3 . . . h2,k

...
...

...
...

...
0 . . . 0 hk,k−1 hk,k

0 . . . 0 0 hk+1,k

 ,

where hi,j = (vTj Kvi). The next iterate x(k) is x(k) = V (k)ŷ, where ŷ is obtained by solving the
least squares problem, minŷ ∥H̄(k)ŷ − βe1∥; e1 = [1, 0, . . . , 0]

T . This is the Arnoldi iteration for
system solution [16].

The conjugate gradient (CG) method is the most widely used Krylov method with symmetric ma-
trices. For symmetric K, H̄(k) is tridiagonal making CG particularly efficient. The generalized
minimum residual (GMRES) is usually used for non-symmetric problems; GMRES minimizes the
residuals r(k) in the 2−norm. CG minimizes the K-norm of the residual and utilizes the conjugacy
in the resulting formulation, which results in not requiring to store the Krylov basis vectors. CG,
therefore, is more efficient (lower cost per iteration) than GMRES. Kernel matrices are symmetric
and satisfy the Mércer conditions aTKa > 0, for any a; and hence K is positive definite. Therefore,
when preconditioning is not used, CG has been the preferred choice [5]; however, GMRES has also
been used [3].

The convergence rate is given by the ratio of the error (ek) at kth iteration to the initial error (e0) in

some norm. For example, the ratio for CG [16] is, ∥ek∥K

∥e0∥K
≤ 2

(√
κ−1√
κ+1

)k

. A similar expression may
be derived for GMRES [16].

Fast matrix-vector products: The key computation in each Krylov step is the MVP Kq or∑N
i=1 qik(xi, xj) for some vector q. Existing approaches to accelerate the MVP either approxi-

mate it [23, 13, 8, 9] and/or parallelize it [21]; and have their pros and cons. In this paper, we
present results with GPUML [21], an open-source package that parallelizes kernel summation on
graphical processors (GPUs) though we also tried with FIGTREE [9]. GPUML is easily extendable
to generic kernels and works well with reasonable input data dimensions (up to 100).

Need for preconditioning: The condition number κ of kernel matrices depends on the data point
distribution and the kernel hyper-parameters. For the Gaussian, the hyper-parameters are the band-
width σ and the regularizer γ. While xi’s are given, the hyper-parameters are generally evaluated
using ML. Fig. 1 shows the κ and number of CG iterations to converge for a kernel matrix con-
structed from data points chosen uniformly at random from inside a unit cube. We observe the
following: there is a direct correspondence between κ and number of CG iterations. For larger
regularizer (γ) and smaller bandwidths (σ), the convergence is much better. The data point distribu-
tion influences the conditioning as well. It is however not possible to hand select these parameters
for each problem. It is necessary to “precondition” [16] the system to be yield better convergence
irrespective of the underlying matrix.

C
on

di
tio

nN
um

be
r

10
2

10
4

10
6

10
8

10
10

10
−9

10
−7

10
−5

10
−3

10
−1

0.01

0.02

0.05

0.1

Regularizer (γ)

G
au

ss
ia

n
B

an
dw

id
th

 δ

T
ot

al
 C

G
 it

er
at

io
ns

 to
 c

on
ve

rg
e

10
1

10
2

10
−9

10
−7

10
−5

10
−3

10
−1

0.01

0.02

0.05

0.1

Regularizer (γ)

Figure 1: Effect of kernel hyper-parameters on the matrix conditioning and CG iterations

3

4 Preconditioning techniques
A left preconditioner (M−1) operates on Kx = b as M−1Kx = M−1b; and a right preconditioner
operates as, KM−1y = b, y = Mx. The Preconditioner M−1 should be chosen so that the
M−1K or KM−1 have a low κ. An ideal preconditioner (M−1) should well approximate K−1, but
be easy to compute.

Conventional preconditioners: Standard preconditioners used in the literature were developed for
sparse matrices that arise in the solution of differential equations, and include Jacobi and Symmetric
Successive Over-Relaxation (SSOR). For general sparse matrices, incomplete LU or Cholesky pre-
conditioners are often used. The triangular factors L and U for a sparse matrix may not be sparse,
but incomplete LU factorizations leads to sparse L and U matrices by setting the coefficients lead-
ing to zero entries of the sparse matrix to zero. For a dense matrix, elements are sparsified using a
cut-off threshold.

Preconditioners to radial basis function interpolation are a closely related problem. Fast precondi-
tioners have been proposed [1, 4, 6], however, these approaches are limited to low data dimensions
(∼ 3 dimensions for X).

Flexible preconditioners: A left preconditioner modifies the right-hand side b in the problem
whereas the right preconditioner leaves it as is. This property of right preconditioners can be ex-
ploited to create “flexible” preconditioning techniques where a different preconditioner can be used
in each Krylov step [15, 18, 11], since the preconditioner only appears implicitly. Flexible precon-
ditioning can be used with both CG [11] and GMRES [15].

Algorithm 1 Flexible GMRES [15]
1: r0 = (b−Kx0), β = ∥r0∥2 and v1 = r0/β
2: Define the m+ 1×m matrix, H̄m = {hi,j}1≤i≤j+1;1≤j≤m

3: for j = 0 to iter do
4: Solve Mjzj = vj (inner preconditioner)
5: w = Kzj (matrix-vector product)
6: for i = 0 to j do
7: hi,j = (w, vi), w = w − hi,jvi
8: end for
9: hj+1,j = ∥w∥2, vj+1 = w/hj+1,j

10: end for
11: Z(iter) = [z1, . . . , ziter],
12: yiter = argminy ∥βe1 − H̄itery∥2, xiter = x0 + Ziteryiter
13: IF satisfied STOP, else x0 = xiter and GOTO 1

Although many papers have shown the convergence of flexible preconditioners under exact arith-
metic, it is very hard to estimate convergence rate or the number of outer iterations accurately under
inexact arithmetic since the underlying subspaces, x0 + span{M1

−1v1,M2
−1v2, . . . ,Mk

−1vk}
are no longer a standard Krylov subspace. This affects CG since conjugacy is essential and cannot
be guaranteed. Notay [11] proposes 2 modifications to a preconditioned flexible CG. The iterates
should be “reorthogonalized” at each step to maintain conjugacy; and the preconditioner system
should be solved with high accuracy. Flexible preconditioners are however easily used with GM-
RES. This fact will be observed in results below, where a poorer performance is observed for flexible
CG relative to flexible GMRES.

The algorithmic details of flexible GMRES are shown in Algorithm 1, and the corresponding un-
preconditioned version is obtained by replacing the Ms with identity matrices. A similar extension
is available for CG as well. The iterations are stopped when ϵ = b−Kxi

N drops below a certain
tolerance.

Krylov method as a flexible preconditioner: In Algorithm 1, all that is needed to prescribe the
right preconditioner is a black-box routine which returns the solution to a linear system with the
preconditioner matrix M. Thus, instead of explicitly specifying M−1, it is possible to specify it
implicitly by solving a linear system with M using another Krylov method such as CG. However,
because this iteration does not converge exactly the same way each time it is applied, this is equiva-
lent in exact arithmetic to using a different M for each iteration [18]. We refer to the preconditioner,

4

operating with matrix M as “inner Krylov” and to the main solver with matrix KM−1 as “outer
Krylov”.

5 Preconditioning kernel matrices
Conventional preconditioners require construction of the complete preconditioner matrix M ini-
tially, followed by expensive matrix decompositions. Thus they have a computational cost of O(N3)
and a memory requirement of at least O(N2). Additionally, the preconditioner evaluations will re-
quire a O(N2) “unstructured” matrix-vector product, which does not have any standard acceleration
technique and is harder to parallelize. This limits their application to very large datasets and will
ruin any advantage gained by the use of fast matrix-vector products (as will be seen later in Sec. 5).

This leads us to propose a key requirement for any preconditioning approach for a kernel matrix: the
preconditioner should operate with an asymptotic time complexity and memory requirement that
are at least the same as the fast matrix vector product. One of the main contributions of the paper
is a particularly simple construction of a right preconditioner, which also has a fast matrix vector
product.

We propose to use a regularized kernel matrix K as a right preconditioner, M = K+ δI. Regular-
ization is a central theme in statistics and machine learning [22], and is not a new concept for kernel
machines, e.g. ridge regression, where the kernel matrix (K̂) is regularized as K̂ + γI. However,
the γ is chosen by statistical techniques, and hence cannot be controlled.

Our use of this old trick of regularization is in a new context – in the preconditioner matrix M.
The simple prescription achieves the following properties: 1. improves condition number of matrix
M, leading to faster convergence of inner iterations. 2. improves conditioning of outer matrix
KM−1. To translate this idea in to a useful preconditioner, we need a prescription for selecting
the regularization parameter δ and specifying the accuracy ϵ to which the inner system needs to be
solved. Because CG is more efficient for unpreconditioned symmetric systems, we use it to solve
the inner system.

Preconditioner acceleration: A preconditioner improves convergence at the expense of an in-
creased cost per iteration. This is because there is a cost associated with the preconditioner con-
struction (amortized over all iterations) and cost of the inner iteration. To be useful, the total time
taken by the preconditioned approach should be smaller.

The key advantages of the proposed preconditioner is that, because M is derived from K, given
X = {x1, x2, . . . , xN}, xi ∈ Rd it is not necessary to explicitly construct the preconditioner M−1.
Further, the key computation in the inner Krylov iteration is a MVP, Mx. This can be accelerated
using the same fast algorithm as for K. Further, the preconditioner system only needs to be solved
approximately (with a low residual CG tolerance and with a lower accuracy MVP). In our experi-
ments we use low-accuracy fast matrix vector products for the inner iterations (single precision on
the GPU). For the outer iterations, the products are performed in double-precision.

Preconditioner parameters: The preconditioner regularizer δ must be chosen on the one hand to
converge quickly, while on the other hand not causing it to deviate too much from the inverse of K.
The convergence of CG for a kernel matrix for different δ’s is shown in Fig. 1. It can be seen that
for large enough δ, CG converges rapidly. The CG can also be forced to have an early termination
by setting a low solution accuracy (ϵ).

Effect of regularization parameter (δ): In flexible Krylov methods, the outer GMRES iteration
solves KM−1y = b, and the inner CG solves Mx = y. For small δ, M is closer to K. Therefore, the
outer iteration is better conditioned; however, when K is ill-conditioned, M will also be somewhat
ill-conditioned, thus slowing the inner iterations.

To demonstrate this, we generated data as before by taking 2000 random samples in a unit cube
and generated a matrix for the Gaussian kernel. We tested the convergence with this preconditioner
for various regularizer values (Figs. 2(a) and 2(b)). For smaller δ, the convergence of the outer
iterations is faster, but the cost per iteration increases due to slow convergence of the inner iterations.
Large regularization results in a poor preconditioner M. An intermediate value of the regularizer is
therefore optimal. This is observed for both flexible CG (FCG) and flexible GMRES (FGMRES).
However, because of its formulation, the optimal FCG regularizer δ is an order of magnitude lower
than that for FGMRES.

5

The choice of a regularizer involves a trade-off between the preconditioner’s accurate representation
of the kernel matrix and its desired conditioning.

10
0

10
5

10
10

10
0

10
1

10
2

10
3

N
um

be
r

of
 It

er
at

io
ns

10
0

10
5

10
10

10
−1

10
0

10
1

10
2

Condition number of K

T
im

e
ta

ke
n

CG
FCG − δ=1.00e−002
FCG − δ=1.00e−004
FCG − δ=1.00e−006

(a) Effect on flexible CG

10
0

10
5

10
10

10
0

10
1

10
2

10
3

N
um

be
r

of
 It

er
at

io
ns

10
0

10
5

10
10

10
−1

10
0

10
1

10
2

Condition number of K

T
im

e
ta

ke
n

GMRES
FGMRES − δ=1.00e+000
FGMRES − δ=1.00e−002
FGMRES − δ=1.00e−004

(b) Effect on flexible GMRES

Figure 2: Effect of regularizer δ on the convergence for FCG and FGMRES for different conditioning
of K. The condition number is adjusted by increasing the Gaussian bandwidth σ for K.

Effect of CG tolerance (ϵ): We tested the performance of the preconditioner for various tolerances
in the inner iterations (Figs. 3(a) and 3(b)). There is a consistent improvement in the outer conver-
gence for more precise convergence settings of the inner solver. However, the cost of inner iterations
increases. Therefore, an optimal intermediate value of ϵ works best for both FCG and FGMRES.

The choice of tolerance for CG iterations is a trade-off between the required solution accuracy
of the preconditioner system (and hence the convergence of the outer iterations) and the related
computational cost.

10
0

10
5

10
10

10
0

10
1

10
2

10
3

N
um

be
r

of
 It

er
at

io
ns

10
0

10
5

10
10

10
−1

10
0

10
1

10
2

Condition number of K

T
im

e
ta

ke
n

CG
FCG − ε=1.00e−002
FCG − ε=1.00e−004
FCG − ε=1.00e−006

(a) Effect on flexible CG

10
0

10
5

10
10

10
0

10
1

10
2

10
3

N
um

be
r

of
 It

er
at

io
ns

10
0

10
5

10
10

10
−1

10
0

10
1

10
2

Condition number of K

T
im

e
ta

ke
n

GMRES
FGMRES − ε=1.00e−002
FGMRES − ε=1.00e−004
FGMRES − ε=1.00e−006

(b) Effect on flexible GMRES

Figure 3: Effect of CG tolerance ϵ on the convergence for FCG and FGMRES for different condi-
tioning of K. The condition number is adjusted by increasing the Gaussian bandwidth σ for K.

Test of convergence We compared the performance of FCG and FGMRES against ILU precon-
ditioned CG and GMRES and the unpreconditioned CG and GMRES. We set the preconditioner
δ and tolerance ϵ to {10−4, 10−4} respectively for FCG and {10−2, 10−4} for FGMRES respec-
tively. 2000 data points were generated randomly in a unit cube for testing the convergence. The
computational performance and convergence is shown in Fig. 4. The number of iterations of the

6

preconditioned approaches are always less than those for the unpreconditioned cases. The computa-
tional cost per iteration is the least for CG compared to GMRES, FCG, and FGMRES. Incomplete
LU (ILU) based preconditioners are marginally better in convergence (iterations) compared to our
approach for better conditioned cases. But ILU (and other similar preconditioners) require explicit
kernel matrix construction and rely on sparsity of the matrix to be solved and the absence of these
properties in kernel matrices result in significantly higher computational cost compared to our pre-
conditioners as well as the unpreconditioned solver. This makes them impractical.

10
2

10
4

10
6

10
8

10
0

10
1

10
2

Condition number of K

N
um

be
r

of
 It

er
at

io
ns

10
2

10
4

10
6

10
8

10
−1

10
0

10
1

Condition number of K
T

im
e

ta
ke

n

CG
GMRES
FCG
FGMRES
ILU−CG
ILU−GMRES

Figure 4: Performance of our preconditioner with CG and GMRES against ILU-preconditioned and
unpreconditioned versions for different conditioning of K. The condition number is adjusted by
increasing the Gaussian bandwidth σ for K.

We see that FCG needs increased accuracy of the inner linear system solution. In contrast, FGM-
RES is more forgiving of inner linear system error and only requires coarse accuracy to reduce the
number of outer iterations to the same magnitude as FCG. On the other hand, especially for the
ill-conditioned matrices, solving the inner Krylov method with fine accuracy takes much more time.
Hence, given the ill-conditioned kernel matrices, the best FMGRES has the lesser number of outer
iterations as well as smaller computation time.

The unpreconditioned algorithm of choice is CG, because of its lower storage and efficiency. How-
ever, FGMRES is the method of choice for preconditioned iterations. While GMRES requires extra
storage in comparison to CG, FCG also requires this extra storage (for reorthogonalization), and we
do not pay a storage penalty for our choice of FGMRES over FCG. In the sequel, we accordingly
use FGMRES.

6 Experiments
The preconditioner performance is illustrated on various datasets on different variants of kernel
regression. We first look at GPR with a Gaussian kernel and then experiment on kriging [7] and
report results on a large geostatistical dataset.

Although dataset-specific tuning of the preconditioner parameters can yield better results, this is
impractical. We therefore use the following rules to set the preconditioner parameters. The toler-
ance (ϵ) for the preconditioner system solution is set at an order of magnitude larger than the outer
iteration tolerance (e.g., outer tolerance = 10−4, inner tolerance = 10−3). Similarly, the precondi-
tioner regularizer δ is also set to an order of magnitude higher than the kernel regularizer γ. When
the outer regularizer is 0, the inner regularizer is set to 10−3. While this might not yield the best
preconditioner system, it performs well in most cases from our experiments. In all experiments, the
outer iteration tolerance was set to 10−6.

Gaussian process regression (GPR): The key computational bottleneck in GPR involves the so-
lution of a linear system of kernel matrix. Direct solution via decompositions such Cholesky [12]
requires O(N2) space and O(N3) time requirements. Alternatively, Mackay et al. [5] use CG to
solve the GPR.

In our experiments, the covariance kernel parameters are estimated via maximum likelihood as in
[12] with a small subset of the input data. We compare the performance of our preconditioner against
a direct solution using [12], our implementation of the CG approach in [5] and Incomplete LU based
preconditioner on various standard datasets(www.liaad.up.pt/˜ltorgo/Regression/).

7

The kernel matrix vector product in all compared scenarios was also accelerated using GPUML.
Table 1 shows the corresponding result.

The convergence of the preconditioned FGMRES (both with ILU and our preconditioner) is consis-
tently better than the unpreconditioned approach. Although for smaller datasets there is very little
separating the computational performance of the solvers, the performance of our FGMRES with
our preconditioner gets better for larger data sizes. This is because, for larger problems, cost per
iteration in both CG and FGMRES increases, and thus a FGMRES which converges faster becomes
significantly better than the CG-based approach. Further, for larger problems, both the direct method
and ILU-preconditioning run into space issues due to the requirement of the physical construction
of the kernel matrix.

Table 1: Performance of FGMRES based Gaussian process regression against the direct, CG [5]
and ILU-preconditioned solvers; d is the dimension and N is the size of the regression dataset with
the Gaussian kernel. Total time taken for prediction is shown here, with the number of iterations for
convergence indicated within parenthesis. The mean error in prediction between the two approaches
was less than 10−6 in all the cases.

Datasets (d×N) Direct [12] CG [5] ILU FGMRES
Diabetes (3× 43) 0.03 0.03 (8) 0.25 (4) 0.04 (3)
Boston Housing (14× 506) 0.86 0.67 (33) 0.86 (3) 0.62 (3)
Pumadyn (9× 4499) 63.61 5.61 (32) 73.45 (4) 3.61 (3)
Bank (1) (9× 4499) 64.18 6.53 (35) 74.73 (4) 4.28 (3)
Robot Arm (9× 8192) 232.61 23.81 (75) 268.37 (3) 11.79 (4)
Bank (2) (33× 4500) 66.85 49.40 (38) 76.54 (3) 37.74 (3)
Census (1) (9× 22784) −− 117.45 (42) −− 90.31 (4)
Ailerons (41× 7154) 170.76 131.34 (31) 208.87 (2) 128.22 (4)
2D Planes (11× 40768) −− 469.41 (31) −− 415.30 (6)
Census (2) (17× 22784) −− 663.70 (83) −− 482.50 (5)
Sarcos (28× 44484) −− −− −− 1090.85 (4)
Kriging [Pacific Coast Data] −− 2, 301± 800s −− 725± 190s
(3× 179, 065± 35, 405) −− (46± 12) −− (3± 1)

Low rank approaches [20, 17, 19] also address the time complexity in kernel regression by working
on an “active set” of set M and reducing the time to O(M2N). We compared with the low rank
GPR based on [19], and found our approach to be superior. Because these approaches involve the
solution of a large optimization problem, straightforward algorithmic acceleration or parallelization
is not possible. Since the methods and accelerations used in this paper are significantly different
from those in [19], we have not reported these here.

Kriging: We compared FGMRES-based kriging against the CG version on the ocean chloro-
phyll concentration data recorded along the Pacific coast of North America obtained from Na-
tional Oceanic and Atmospheric Administration(http://coastwatch.pfel.noaa.gov/).
We look at the 7-day aggregate of the chlorophyll concentration, which is recorded on a grid of
416 × 600. However, this includes several locations with missing data or those located over land.
This results in approximately 179, 065± 35, 405 data samples per week.

It was observed that the CG-based approach converges in 46 ± 12 iterations in 2, 301 ± 800s,
whereas, the FGMRES converges in just 3± 1 (outer) iterations in 725± 190s, resulting in over
3X speedup.

7 Conclusions and discussions
A method to improve convergence of Krylov methods used in kernel methods was demonstrated.
The key contributions of the paper are as follows,

• A novel yet simple preconditioner is proposed to solve a linear system with a kernel matrix
using flexible Krylov methods.

• A technique to accelerate the inner preconditioner system using truncated CG with fast
matrix vector products was developed.

• Rules to select the preconditioner parameter were shown.

8

References

[1] R.K. Beatson, J.B. Cherrie, and C.T. Mouat. Fast fitting of radial basis functions: Methods
based on preconditioned GMRES iteration. Advances in Computational Mathematics, 11:253–
270, 1999.

[2] C. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., 2006.

[3] N. de Freitas, Y. Wang, M. Mahdaviani, and D. Lang. Fast Krylov methods for n-body learning.
In Advances in Neural Information Processing Systems, 2005.

[4] A.C. Faul, G. Goodsell, and M.J.D. Powell. A Krylov subspace algorithm for multiquadric
interpolation in many dimensions. IMA Journal of Numerical Analysis, 25:1–24(24), 2005.

[5] M. Gibbs and D. Mackay. Efficient implementation of Gaussian processes. Technical report,
1997.

[6] N.A. Gumerov and R. Duraiswami. Fast radial basis function interpolation via preconditioned
Krylov iteration. SIAM Journal on Scientific Computing, 29(5):1876–1899, 2007.

[7] E.H. Isaaks and R.M. Srivastava. Applied Geostatistics. Oxford University Press, 1989.
[8] D. Lee, A. Gray, and A. Moore. Dual-tree fast Gauss transforms. In Advances in Neural

Information Processing Systems 18, pages 747–754. 2006.
[9] V. Morariu, B.V. Srinivasan, V.C. Raykar, R. Duraiswami, and L. Davis. Automatic online

tuning for fast Gaussian summation. In Advances in Neural Information Processing Systems,
2008.

[10] I. Murray. Gaussian processes and fast matrix-vector multiplies. In Numerical Mathematics in
Machine Learning workshop, 2009.

[11] Y. Notay. Flexible conjugate gradients. SIAM J. Sci. Comput., 22(4):1444–1460, 2000.
[12] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT Press,

2005.
[13] V.C. Raykar and R. Duraiswami. The improved fast Gauss transform with applications to

machine learning. In Large Scale Kernel Machines, pages 175–201, 2007.
[14] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Manchester University Press,

1992.
[15] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput.,

14(2):461–469, 1993.
[16] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied

Mathematics, 2003.
[17] M Seeger, C.K.I Williams, N Lawrence, and S. Dp. Fast forward selection to speed up sparse

gaussian process regression. In Workshop on AI and Statistics 9, 2003.
[18] V. Simoncini and D.B. Szyld. Flexible inner-outer Krylov subspace methods. SIAM J. Numer.

Anal., 40(6):2219–2239, 2002.
[19] E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Advances

in Neural Information Processing Systems, pages 1257–1264, 2006.
[20] E. Snelson and Z. Ghahramani. Local and global sparse gaussian process approximations. In

Artificial Intelligence and Statistics (AISTATS), 2007.
[21] B.V. Srinivasan, Q. Hu, and R. Duraiswami. GPUML: Graphical processors for speeding up

kernel machines. In Workshop on High Performance Analytics - Algorithms, Implementations,
and Applications. Siam International Conference on Data Mining, 2010.

[22] V. Vapnik. The Nature of Statistical Learning Theory (Information Science and Statistics).
Springer, 2nd edition, November 1999.

[23] C. Yang, C. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast
gauss transform. In Advances in Neural Information Processing Systems, 2004.

9

